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effects
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Introduction
Natural convection within enclosures filled with a porous medium has been
studied extensively owing to its widespread engineering applications, including
geothermal systems, underground spread of pollutants, storage of nuclear
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Nomenclature
A = aspect ratio of the cavity, L1/L2
a, b = Ergun constant
B = constant defined in equation (7)
C = coefficient in the dispersion diffusivity
Cp = specific heat at constant pressure
Da = Darcy number, K/L2

2

Da∞ = bulk Darcy number
F = Forchheimer coefficient
f = quantity defined in equation (25)
g = gravitational acceleration
kc = stagnant thermal conductivity
kc∞ = bulk stagnation conductivity
kd = dispersive thermal conductivity
ke = effective conductivity of the porous

medium
kf = thermal conductivity of fluid
ks = thermal conductivity of solid
K = permeability
K∞ = bulk permeability
L1 = width of the cavity
L2 = height of the cavity
l = dispersive length
m = number of iteration
Nu = local Nusselt number
Nu
––

= mean Nusselt number
Prf = Prandtl number of fluid
Prm = media Prandtl number
p*, p = dimensional and dimensionless pressure
Raf = Rayleigh number of fluid, gβf(Th

* –
Tc

*)L2
3/υfαf

Ram = media Rayleigh number,
Km∞ gβf∆T*L2/υf αm

T*, T = dimensional and dimensionless
temperature

u*, u = dimensional and dimensionless Darcian
velocities in the x*–direction

v*, v = dimensional and dimensionless Darcian
velocities in the y*–direction

|v*|,|v–| = dimensional and dimensionless absolute
velocities

x*, x = dimensional and dimensionless
horizontal co-ordinates 

y*, y = dimensional and dimensionless vertical
co-ordinates

Greek symbols
αe = effective thermal diffusivity, ke/ρf Cpf
αf = thermal diffusivity of fluid, kf/ρf Cpf
βf = thermal expansion coefficient of fluid
Γ = dimensionless particle diameter, dp/L2
µf = dynamic viscosity of fluid
υf = kinematic viscosity of fluid
ρf = density of fluid
ε = porosity
λ = thermal conductivity ratio of fluid and

solid phases
θ = inclined angle of the cavity
Ψ = dimensionless stream function
Ω = dimensionless vorticity
∇ 2 = Laplace operator in the (x, y) co-ordinates
η = dimensionless co-ordinate based on

particle diameter, x*/dp
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waste materials, solidification of casting, thermal insulation and electronic
cooling. Most of the early theoretical studies were based on Darcy’s law with the
assumption of a uniform porosity medium (Cheng, 1978). It was found that the
Nusselt number of the problem depends only on the Rayleigh number and the
aspect ratio. However, the experimental results (Seki et al., 1978; Prasad et al.,
1985) show that the Nusselt number depends not only on the Rayleigh number
and the aspect ratio, but also on the Prandtl number, the Darcy number and the
thermal conductivity ratio of the fluid and solid phases.

A number of effects which were neglected in early analyses owing to the
limitations of the Darcy’s law have recently been investigated. Chan et al. (1970),
Tong and Subramanian (1985) and Lauriat and Prasad (1986) have studied the
viscous effects using the Brinkman-extended Darcy equations. Tong and
Subramanian (1985) found that pure Darcy analysis is applicable only when
RaDa2/A < O(10–4). The inertia effects have been investigated by Poulikakos
(1985) who used the Forchheimer-extended Darcy model. Beckermann et al.
(1986) have studied the inertia and viscous effects using the Brinkman-
Forchheimer-extended Darcy equations (BFD model), and found that at high
Darcy numbers (Da >10–4) the inertia and viscous effects have the same order of
magnitude and must be taken into account simultaneously.

The effects of variable porosity on forced convection in porous media have
been reported by Vafai (1984), Cheng and Hsu (1986b) and Poulikakos and
Renken (1987). It was shown that the porosity variation has important effects on
heat transfer if the dimensionless particle diameter is high.

Thermal dispersion effect on natural and mixed convection in a uniform
porosity medium of infinite extent was studied by Cheng (1981) and Cheng and
Zhang (1986). Thermal dispersion effect on natural and mixed convection in a
uniform porosity rectangular cavity heated from below was studied by
Georgiadis and Catton (1988). Hong et al. (1987a, 1987b) have studied the
variable porosity and thermal dispersion effects on natural convection near a
vertical plate.

More recently, the effects of particle diameter, Prandtl number, aspect ratio of
the cavity, thermal conductivity ratio and bulk porosity on natural convection
in a rectangular porous cavity heated from the vertical side wall have been
investigated by Davis et al. (1988). The variable porosity and thermal
dispersion effects on natural convection about a heated horizontal cylinder in an
enclosed porous medium was studied by Hsiao et al. (1992). 

Though effects of individual parameter have been investigated in the
previously mentioned works, they are almost focused on effects of individual
parameter or few parameters only. To the author’s knowledge, no investigations
aimed at integrating parameters of affecting the flow and heat transfer
characteristics of natural convection in a porous cavity together to study the
coupling effects between different parameters and to suggest a better model for
simulating a porous cavity have been proposed. To achieve this objective, a
more complete model is adopted in this study in which the effects of variable
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porosity, thermal dispersion, conductivity ratio of the fluid and solid phases,
Prandtl number, dimensionless particle diameter, and inclined angle of the
cavity on natural convection in a porous cavity are all considered. In this model,
the coupling effects due to different parameters can be investigated. The 
non-Darcian effects are included in the momentum equation, and the 
thermal dispersion effect is considered in the energy equation. The wall effect
on porosity is approximated by an exponential function (Cheng, 1986) and its
effect on thermal dispersion is modeled by the dispersive length concept
proposed by Cheng and Hsu (1986a) and Hsu and Cheng (1988). The governing
equations in terms of stream function, vorticity and temperature are solved by
the finite difference method. The streamlines, isotherms, temperature and
velocity distributions, and average Nusselt numbers at different Rayleigh
numbers, Prandtl numbers, dimensionless particle diameters and inclined
angles are presented. It is found that the variable porosity and thermal
dispersion effects tend to increase the heat transfer rate. The effect of the
thermal conductivity of the solid phase on the Nusselt number is greater at low
Rayleigh numbers where conduction heat transfer is predominant. The
predicted Nusselt numbers which take into account the effects of non-Darcian,
variable porosity and thermal dispersion have the best agreement with existing
experimental data.

Mathematical formulation
A schematic of the physical model and co-ordinate system is shown in Figure 1.
Two opposite isothermal walls of the inclined rectangular cavity were kept at
different temperatures while the other walls were thermally insulated.

The governing equations for the conservation of mass, momentum 
and energy in Cartesian co-ordinates for the problem of steady natural
convection in a variable porosity medium according to the Boussinesq
approximation are:

Figure 1.
Physical model and
co-ordinate system
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(1)

(2)

(3)

where v– * and p– * are the volume-averaged velocity vector and pressure. K and
F are the permeability and the inertial coefficient of the porous medium which
are given by the following correlations for a packed-sphere bed:

(4)

(5)

Here, a and b are empirical constants, dp is the particle diameter, and ∈ is the
porosity which is assumed to vary exponentially with distance from the walls
(Chandrasekhara and Vortmeyer, 1979) such that:

(6)

where x* is the distance from the wall, N1 is an empirical constant, and ∈ ∞ and
∈ o are the porosities at locations far away and on the wall, respectively.

The quantity ke in equation (3) is the effective thermal conductivity of the
saturated porous medium which is a superposition of the stagnant thermal
conductivity (kc) and the dispersive conductivity (kd); i.e. ke = kc + kd.

The value of the stagnant thermal conductivity of the saturated porous
medium can be computed according to the semi-analytical expression given by
Zehner et al. (1970) as

(7) 
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where B = 1.25[(1 – ∈ )/∈ ]10/9 and λ = k f /ks where kf and ks denote the thermal
conductivity of the fluid and the solid phases respectively.

The value of ks for a glass bead is calculated based on the expression (Fand
and Phan, 1987)

(8)
where T* is the temperature in centigrade and ks is expressed in w/m°C.

The thermal dispersion conductivity for flow through a porous medium is
given by Cheng and Hsu (1986a) and Hsu and Cheng (1988).

(9)
Here l is the dispersive length which is given by

(10)
while |v–*| = (u*2 + v*2)1/2 and the dispersivity value, C = 0.02, was determined
by a comparison of theoretical and experimental results (Hsu and Cheng, 1988).
We now introduce the following dimensionless variables:

(11)
In terms of these variables, the governing equations become

(12)

(13)
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(14)

(15)

where αe, Prf , and Raf are the effective thermal diffusivity of the saturated
porous medium, the Prandtl number, and the Rayleigh number respectively,
which are defined as 

(16)

Da is the local Darcy number which is defined as

(17) 

The local Darcy number is related to the bulk Darcy number (Da∞) by

(18) 

where 

denoting the bulk permeability and Γ = dp/L2. 
Eliminating the pressure terms in equations (13) and (14), the resulting

nondimensional equations for the stream function, vorticity, and temperature
are given by
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(20)

(21)

where the dimensionless stream function and vorticity are defined as

(22)

In terms of the dimensionless co-ordinates, equation (6) becomes

(23)

where Γ = dp/L2 is the dimensionless particle diameter.
The dimensionless boundary conditions are:

(24a)

(24b)

(24c)

(19)
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(24d)

Numerical procedures
The governing equations, (19)-(21), are discretized by the finite difference
method based on second order differencing, and the resulting finite difference
equations are solved by the successive over-relaxation (SOR) technique. The
necessary number of grid points depends on the Rayleigh number, the aspect
ratio of the cavity (A = L1/L2), and the particle diameter. Trial calculations were
necessary to check computation accuracy. The grid space near the wall should
be less than one-third of the particle diameter if accurate results are to be
obtained. It was found that a uniform grid of 101 × 101 is needed for a square
cavity to obtain accurate temperature and velocity gradients near the wall and
Nusselt number as well for the cases of considering the variable porosity and
thermal dispersion effects. If smaller grid umbers are needed, a nonuniform
grid is suggested, but the density of grids near the wall should be controlled.
However, a grid of 61 × 61 is required only to obtain accurate results for cases
with constant porosity and neglecting thermal dispersion effect.

The numerical solutions were obtained using an iterative process which was
repeated until the following convergence criterion was satisfied:

(25)

Here f is a general symbol used for Ψ, Ω, and Τ and m is the iteration number.
Computations were also carried out for the local and mean Nusselt numbers
along the hot wall, which are defined as follows:

(26)

(27)

Results and discussion
The parameters shown in the governing equations and boundary conditions are
particle diameter, Prandtl number, aspect ratio of the cavity, thermal
conductivity ratio of fluid and solid phases, porosity and inclined angle of the
cavity. In equations (4)-(6), some empirical constants should be used to estimate
the permeability and porosity of a packed-sphere bed. The combination of
empirical constants ∈ ω = 0.36, ∈ o = 0 .9, N1 = 7, a = 215, and b = 1.92 proved to
be best for obtaining results in good agreement with experimental data by
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Hsiao et al. (1992). Thus, the numerical results presented in this paper were
obtained using these constants.

Accuracy of the numerical solutions
The accuracy of the numerical algorithm was checked by comparing the
present results for the Nusselt number with values reported in literature.

In Table I, previous numerical results in Nusselt numbers are compared with
present predictions for cases with constant porosity and neglecting thermal
dispersion. In this table, the parameter Prm represents the modified Prandtl
number which is defined as Prm = υf /αe . Weber (1975) obtained results using
the pure Darcy model. The values of Tong and Subramanian (1985) were
obtained based on the Brinkman-Darcy model with a boundary layer
approximation, and those of Beckermann et al.(1986) were obtained using the
Brinkman-Forchheimer-Darcy model. It is found that the present Nusselt
numbers for constant porosity medium (αe/αf = 1.4) are in good agreement with
those of Beckermann et al. (1986) . This is due to the fact that the constant
porosity model in this work is the same as that of Beckermann’s. By comparing
with the results of Beckermann et al. (1986), the accuracy of this work is
assured.

Effect of Prandtl number
The effects of Prandtl number on the mean Nusselt numbers for porous cavities
with uniform porosity (dashed line) and variable porosity (solid line) are
presented in Figures 2 and 3. Figure 2 shows Prandtl number effects of the fluid
on the average Nusselt number for a square porous cavity with λ = 0.6, and
Γ = 0.04 and 0.2. It is shown that the Nusselt number increases with the Prandtl
number. If the Prandtl number is greater than one, its effects on the Nusselt
number are small for both uniform and variable porosity media. The Prandtl
number effect on the Nusselt number increases if the Prandtl number is less
than one, which is in agreement with experimental observations (Jonsson and
Catton, 1987) . Figure 3 shows the Prandtl number effect on the average Nusselt
number as a function of Rayleigh number for natural convection in a square
cavity heated from below (θ = 90°) with λ = 0.6 and Γ = 0.2. It is clear that
Prandtl number effects on the average Nusselt number are small for Pr > 1.

Weber Tong Beckermann Present
Cases Raf Da A Prm (25) (5) (8) results

Heated 1.598 × 109 8.125 × 10–7 2.25 4 13.9 13.5 11.15 11.23
from 1.997 × 109 8.125 × 10–7 2.25 4 15.5 15.0 12.61 12.70
below 9.969 × 107 3.250 × 10–6 2.25 4 4.9 4.8 4.54 4.61
θ = 90° 1.994 × 108 3.250 × 10–6 2.25 4 6.9 6.8 6.62 6.71

Table I.
Comparison of Nusselt
numbers from present

and previous numerical
models for a uniform

porous medium



Effect of dimensionless particle diameter
Figure 4 depicts the effects of dimensionless particle diameter on the mean
Nusselt number for a porous cavity heated from below (θ = 90°) with Α = 1 and
λ = 0.6, where the dashed lines represent the results for a uniform porosity
medium and the solid lines represent those for a variable porosity medium. The

HFF
8,1

106

Figure 2.
Effect of Prandtl
number and
dimensionless particle
diameter on Nusselt
number for a square
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Figure 3.
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effect of variable porosity on Nusselt number increases with the dimensionless
particle diameter. Because the porosity of the medium increases with the
diameter of the particle, and the porosity effect increases the temperature
gradient adjacent to the wall, this results in the enhancement of surface heat
flux. 

It is also found that the value of the Rayleigh number for the onset of free
convection is reduced as dimensionless particle diameter is increased.
Comparing the solid curves, we see that, in a variable porosity medium, the
slopes of the curves start to decrease at lower Rayleigh numbers as the value of
Γ is increased, which is similar to the results obtained by heating from the
vertical side wall (Davis et al., 1988).

Effect of thermal conductivity ratio
The effects of the thermal conductivity ratio of the fluid and solid phases on the
mean Nusselt number of a square cavity filled with a uniform porosity medium
and a variable porosity medium with Prf = 5, Α = 1, and Γ = 0.1 are shown in
Figures 5 and 6. Figure 5 shows the effects of the thermal conductivity ratio on
the average Nusselt number for a porous cavity heated from the side (θ = 0°).
The dashed lines represent the results for a uniform porosity medium while the
solid lines are for a variable porosity medium. For λ = 0.1 (where the thermal
conductivity of the fluid is much smaller than that of the solid) both the solid
and dashed lines are horizontal at small Rayleigh numbers indicating that heat
conduction is predominant; onset of convection occurs at a larger Rayleigh
number (where the lines curve upward). When λ = 10, however, both the solid
and dashed lines curve upward continuously, indicating that convection begins

Figure 4.
Effect of dimensionless

particle diameter on the
mean Nusselt number

for a square porous
cavity (θ = 90°)105 106 107 108 109 1010
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at a very small Rayleigh number. Figure 6 shows the effect of thermal
conductivity ratio on the average Nusselt number in a square porous cavity
heated from below (θ = 90°). It is apparent that the critical Rayleigh number for
the onset of free convection decreases as the thermal conductivity ratio
increases, as discussed earlier.

Figure 5.
Effect of thermal
conductivity on mean
Nusselt number (Α = 1, 
Γ = 0.1, θ = 0°) 105 106 107 109
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Figure 6.
Effect of thermal
conductivity on mean
Nusselt number (Α = 1, 
Γ = 0.1, θ = 0°) 105 106 107 108
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Effect of inclination angle of the cavity
The effect of the inclination angle of the cavity (θ) on flow and heat transfer
characteristics in a square cavity with uniform porosity at Raf = 108, λ = 0.6
and Γ = 0.1 are presented in Figures 7-9. Figure 7 shows the streamlines (right,
(∆ Ψ = 2) and isotherms (left, ∆Τ = 0.1) in a porous cavity with glass beads
saturated with water and with the cavity at different inclination angles. It can
be seen from these figures that the flow patterns and isotherms varied with the
inclination angle. The density of streamlines increases from θ = 0° to 45°, then
decreases from θ = 45° to 90°, indicating that there is a critical value of θ for
which the heat transfer rate is maximum. As the inclination angle is increased
to 75°, the flow pattern is still in one convective cell. With further increases in
the inclination angle to θ = 90° as shown in Figure 7(f), the flow pattern
becomes two convective cells. It is apparent that the isotherms and streamlines
are symmetric about the vertical axis of the cavity, which is consistent with the
physical meaning of the problem when the cavity is heated from below. Figure
8 shows the temperature distributions on the symmetric axis perpendicular to
the isothermal walls for θ = 0° , 45°, and 90°. It is shown that the distortion of
the temperature curve at θ = 45° is more obvious than those at θ = 0°, and 90°.
This result shows that the maximum value of the temperature gradient near the
wall occurs at θ = 45°, suggesting that the convective effect is enhanced here.

The effect of the inclination angle on the mean Nusselt number for a
rectangular cavity filled with water and glass beads with Α = 1, Γ = 0.1, λ = 0.6,
and Raf = 108 is shown in Figure 9. The mean Nusselt number increases with
inclination angle from 0° to about 36° and then decreases monotonically to 90°,
indicating that the maximum average Nusselt number is located at θ = 36°.
These results are in agreement with the experimental data of Inaba et al. (1988)
which were obtained using water-glass spheres with an aspect ratio Α = 5.

Effect of variable porosity
Figure 10(a) shows the velocity distribution of the fluid along the horizontal
axis of the cavity with Raf = 107 , Γ = 0.1, Α = 1, λ = 0.6, and θ = 0 (heated from
the side). Figure 10(b) shows the velocity distribution in another case with the
same parameters as those in Figure 10(a) except the value of Γ is reduced to
0.01. The results show that the variable porosity creates a channeling effect
such that the fluid velocity near the wall is increased, resulting in enhancement
of the convection effect. These figures also show that the velocity distribution of
the model VPWD (variable porosity with dispersion effect) coincides with that
of the model VPND (variable porosity without dispersion effect), and those of
the models CPWD (uniform porosity with dispersion effect) and CPND (uniform
porosity without dispersion effect) are also consistent. This indicates that the
location of the peak velocity is only affected by the particle diameter, not by the
variable porosity or the thermal dispersion. These results show that the
maximum velocity occurs at about one-third of the particle diameter away from
the wall; its magnitude increases as the value of Γ is decreased. Figure 11(a)
shows the temperature distribution along the horizontal axis of a cavity with
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Figure 7.
Steady state streamlines
(right, ∆Ψ = 2) and
isotherms (left, 
∆Τ = 0.1) in a uniform
porosity cavity (Α = 1,
Γ = 0.1, Raf = 108)

 15°

(a)       = 0°

(b)       = 15°

(c)       = 30°

(d)       = 45°

(e)       = 75°

(f)        = 90°

θ

θ

θ

θ

θ

θ

0° 0°

 15°

30°30°

45°45°

75°

75°

90° 90°



Natural
convection in
porous cavity

111

Raf = 107, Γ = 0.05, Α = 1, λ = 0.6 and θ = 0° (heated from the side), where η in
the abscissa represents the dimensionless co-ordinate based on the particle
diameter (η = x*/dp). The corresponding velocity distribution is shown in
Figure 11(b). It is shown that the curvature of the temperature curve for a
variable porosity medium (solid line) is greater than that of a uniform porosity
medium (dashed line) in the region near the wall (η < 1.2), suggesting that the
variable porosity effect tends to increase the temperature gradient adjacent to
the wall, which results in the enhancement of surface heat flux. The curvature
of the temperature curve for a variable porosity medium is less than that for a

Figure 8.
Temperature profiles on

the symmetric axis
perpendicular to the

isothermal walls of a
uniform porosity cavity

with Α = 1, Γ = 0.1, 
λ = 0.6, and Raf = 108
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uniform porosity medium in the region of η > 1.2, which means that the
temperature of the variable porosity medium is greater than that of the uniform
porosity medium in this region. This is because the variable porosity effect
enhanced the surface heat flux such that the heat energy was dispersed far
away from the wall.

The effect of variable porosity on the average heat transfer rate is shown in
Figures 2-6. The results show that the effect of variable porosity tends to
increase the mean Nusselt number in the convection dominated region while it
can be neglected in the region dominated by conduction.

Effect of thermal dispersion
The thermal dispersion effect on the mean Nusselt number as a function of
dimensionless particle diameter for the water/glass beads system at Raf = 108,

Figure 10.
Velocity distributions
for different particle
diameters: (a) Α = 1, 
Γ = 0.1, θ = 0°, and 
λ = 0.6; (b) Α = 1, 
Γ = 0.01; θ = 0°, and 
λ = 0.6
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λ = 0.6, and Α = 1 is presented in Figure 12. It can be concluded from this figure
that thermal dispersion effect increases the heat transfer rate and its effect
increases with increase in the dimensionless particle diameter Γ.

Figure 13 shows the effect of thermal dispersion on the Nusselt number as a
function of the Rayleigh number at different dimensionless particle diameters
for a uniform porosity medium heated from below. To compare the results with
those from the BFD and the Darcy models, the numerical results obtained using
three theoretical models are presented in this figure, where CPWD denotes
results based on uniform porosity with dispersion effect, CPND denotes results
based on uniform porosity without dispersion effect, and DLND denotes results
based on Darcy’s law without dispersion effect. It is shown that the results

Figure 11.
Effect of variable

porosity on temperature
and velocity

distributions at Α = 1, 
Γ = 0.05, θ = 0°, and 

λ = 0.6; (a) temperature
distribution; (b) velocity

distribution
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based on the Darcy model lie between those based on the BFD model with and
without thermal dispersion for a uniform porosity medium. The results show
that the non-Darcian effects considered in the momentum equation, such as the
inertia, viscosity and acceleration terms, reduce the heat transfer rate. Like the
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Figure 12.
Effect of thermal
dispersion on mean
Nusselt number (Α = 1, 
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variable porosity effect, the thermal dispersion effect tends to increase the
temperature gradient adjacent to the wall and consequently to enhance the
surface heat flux.

Effect of acceleration term 
Figure 14 shows a comparison of computed Nusselt numbers (with and without
the acceleration term) with the numerical results by Davis et al. (1988) and the
experimental data obtained by Seki (1978) . It is shown that the acceleration
term decreases the heat transfer rate slightly. The present results without the
acceleration term are shown to be lower than those computed by Davis et al.
(1988), who did not take the acceleration and thermal dispersion terms into
consideration. This disparity can only be attributed to the differences in
numerical methods and the grid size used.

Comparisons with experimental results
Table II compares the experimental data of Inaba et al. (1988) for the average
Nusselt number with the present numerical solutions obtained using four

Figure 14.
Comparison of
calculated and

measured Nusselt
numbers for a square
porous cavity heated

from the side107
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Present results
Porous Inaba
media Γ Α Ram θ et al. (1988) VPWD VPND CPWD CPND

Water/glass 0.153 5 121 0° 3.64 3.124 3.014 2.441 2.287
Water/glass 0.153 5 1,260 0° 9.71 9.132 8.724 7.643 7.321

Table II.
Comparison of Nusselt
numbers from present 
results and previously

published experimental 
data
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theoretical models for natural convection in rectangular cavities filled with
glass spheres saturated with water at Α = 5, θ = 0°, and Γ = 0.153. Ram in this
Table denotes the Darcy-Rayleigh number which is defined as Ram = gβf KL2
(Th

* – Tc
*)/α eυ f. The symbol VPWD represents results based on variable

porosity with dispersion effect, and VPND represents those of variable porosity
without dispersion effect. It is shown that the effect of thermal dispersion
increases the heat transfer rate for both the uniform porosity and variable
porosity models. The results based on the variable porosity model with thermal
dispersion taken into consideration have the best agreement with experimental
data. Figure 14 shows that the computed results agree with the experimental
data obtained by Seki (1978).

Concluding remarks
Various effects on natural convection in an inclined porous cavity are
investigated numerically. Some conclusions can be drawn from the present
study:

(1) The Prandtl number effect is small for Pr >1; however, its effect increases
as the Prandtl number decreases below one.

(2) The location of peak velocity is affected by the particle diameter.
(3) Both variable porosity and thermal dispersion effects increase the

temperature gradient adjacent to the wall, resulting in the enhancement
of surface heat flux. These effects become important when the
dimensionless particle diameter is increased and can be neglected if
conduction is dominant.

(4) The predicted Nusselt numbers based on the BFD model which takes
into account wall effects on porosity, permeability, stagnant thermal
conductivity and thermal dispersive conductivity have the best
agreement with experimental data.
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